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Abstract: Sparsity is a well-studied technique for compressing deep neural networks (DNNs) without compromising
performance. In deep reinforcement learning (DRL), neural networks with up to 5% of their original weights
can still be trained with minimal performance loss compared to their dense counterparts. However, most
existing methods rely on unstructured fine-grained sparsity, which limits hardware acceleration opportunities
due to irregular computation patterns. Structured coarse-grained sparsity enables hardware acceleration, yet
typically degrades performance and increases pruning complexity. In this work, we present, to the best of our
knowledge, the first study on N:M structured sparsity in RL, which balances compression, performance, and
hardware efficiency. Our framework enforces row-wise N:M sparsity throughout training for all networks in
off-policy RL (TD3), maintaining compatibility with accelerators that support N:M sparse matrix operations.
Experiments on continuous-control benchmarks show that RNM-TD3, our N:M sparse agent, outperforms its
dense counterpart at 50%-75% sparsity (e.g., 2:4 and 1:4), achieving up to a 14% increase in performance
at 2:4 sparsity on the Ant environment. RNM-TD3 remains competitive even at 87.5% sparsity (1:8), while
enabling potential training speedups.

1 INTRODUCTION

Modern deep learning (DL) largely relies on over-
parameterized networks, whose performance scales
with data, model size, and compute (Hestness et al.,
2017; Kaplan et al., 2020). Yet, practical deploy-
ment demands low latency, low energy consumption,
and small memory footprints. Model compression
techniques, such as pruning/quantization (Han et al.,
2016; Gale et al., 2019), distillation (Hinton et al.,
2015), and sparse training (Frankle and Carbin, 2018;
Evci et al., 2020), address these challenges by re-
ducing model size while preserving accuracy. In this
work, we focus on sparse training in DRL.

A neural network is considered sparse when a
large fraction of its parameters are zero. Based on
the distribution of zero-valued parameters, sparsity
can be classified into three categories: Unstructured
sparsity zeroes individual weights distributed across
the network without any structure, often achieving
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high compression with minimal accuracy loss (Zhu
and Gupta, 2017; Molchanov et al., 2017; Frantar and
Alistarh, 2023). However, the irregular pattern lim-
its hardware speedups. Structured sparsity removes
entire channels, filters, blocks. This process shrinks
tensors, which reduces the number of multiply and ac-
cumulate (MAC) operations. However, coarser gran-
ularity often yields lower accuracy than unstructured
sparse networks at the same sparsity level (Cheng
et al., 2024), with some mitigation via dependency-
aware pruning at an additional computational cost
(Fang et al., 2023). Semi-structured N:M spar-
sity enforces a constraint whereby each contiguous
group of M weights contains no more than N nonzero
weights (Zhou et al., 2021). When supported in hard-
ware (e.g., 2:4 on NVIDIA Ampere Tensor Cores),
this regularity enables accelerated matrix multiplica-
tions during the forward pass (Mishra et al., 2021).
However, accelerating backpropagation requires an
N:M sparsity pattern along the columns of the orig-
inal weight matrix W (Zhang et al., 2023; Yang et al.,
2025). Beyond the 2:4 sparsity pattern, finer sparsity
patterns such as 1:3 and 1:4 have also been explored
(Taka et al., 2025), enabling greater flexibility.



Figure 1: Illustration of a single cycle of the RNM-TD3 algorithm, demonstrated with an N : M sparsity pattern where N = 2
and M = 4. The weight matrices depicted have dimensions R×C (rows × columns). (Left) A dense matrix W and an N : M
sparse mask E are combined to create the sparse matrix W̃ . This sparse matrix is trained for K steps, during which only the
active weights update the underlying dense matrix. (Right) After K training steps, the weights in the original matrix W change
in magnitude (only at the positions of active weights), resulting in a different mask E. The updated matrix W and the new
mask E create a new sparse matrix W̃ . This cycle repeats until the end of training.

In contrast to supervised learning, DRL involves
training on non-stationary data induced by a contin-
ually evolving policy, using bootstrapping with de-
layed rewards and moving targets (Sutton and Barto,
2018; Mnih et al., 2015). These characteristics make
DRL training inherently unstable, and pruning can
further exacerbate this instability (Livne and Cohen,
2020). Existing sparse DRL approaches either prune
pre-trained dense models (Yu et al., 2019) or em-
ploy topology-evolution strategies that involve neuron
pruning and regrowth (Sokar et al., 2021; Tan et al.,
2022). While effective for compression, both strate-
gies limit training-time acceleration, as post-training
pruning does not exploit sparse matrices during train-
ing.

In this work, we introduce an end-to-end N:M
structured sparse DRL framework that maintains
a hardware-aware N:M sparsity pattern throughout
training for both actor and critic networks of the state-
of-the-art DRL algorithm Twin Delayed Deep Deter-
ministic Policy Gradient (TD3). We demonstrate that
the period of mask updates correlates with Sparse Ar-
chitecture Divergence (SAD) (Zhou et al., 2021), pro-
viding new insights into the dynamics of sparsity dur-
ing DRL training. Results indicate that training an
N:M sparse agent can match the performance of dense
and unstructured baselines. We make the following
contributions:

• Framework for N:M-sparse DRL training. We
maintain strict N:M constraints throughout train-
ing so that both actor and critic are compatible
with hardware-aware sparse matrix-matrix multi-
plications. (e.g., 2:4 on NVIDIA Ampere Tensor
Cores) (Mishra et al., 2021).

• SAD mask dynamics study. We relate the pe-
riod of mask update to the SAD between succes-
sive masks. We find that DRL favors less frequent

mask updates compared to supervised learning
settings. Moreover, we show that maintaining a
stable, non-zero SAD, which is achieved naturally
through training, is correlated with improved cu-
mulative reward.

• Empirical validation. We demonstrate that
on MuJoCo continuous-control benchmarks, our
RNM-TD3 agent outperforms dense baselines on
average return and rivals unstructured sparse base-
lines, while offering theoretical acceleration on
hardware that supports N:M sparse computation.

The rest of the paper is structured as follows. Sec-
tion 2 reviews related work. Section 3 details our
methodology and introduces our sparse training strat-
egy. We evaluate our approach in Section 4 and con-
clude the paper in Section 5.

2 RELATED WORK

Early work on compressing neural networks in RL
focused on knowledge distillation. A trained agent
served as the source model, and its behavior was
distilled into a compact student network, resulting
in a model size reduction of up to 15 times with
no performance loss (Rusu et al., 2015). Building
on this, (Schmitt et al., 2018) introduced an uncon-
strained teacher-student paradigm, reporting a 42%
performance gain while requiring ∼ 10× fewer train-
ing steps for the student.

The first attempts to induce sparsity in DRL fo-
cused on post-training pruning: (i) train a dense
model, (ii) remove small-magnitude weights, (iii)
fine-tune the sparse model. This strategy closely mir-
rors iterative magnitude pruning techniques devel-
oped in deep supervised learning (Han et al., 2015),



and was later adapted to DRL (Livne and Cohen,
2020).

Works inspired by the lottery ticket hypothesis
(LTH) (Frankle and Carbin, 2018) applied in RL show
that sparse sub-networks, when trained from scratch,
can match or even surpass their dense counterparts
(Yu et al., 2019; Vischer et al., 2021). In offline RL,
single-shot pruning methods (i.e., sparsity is defined
at initialization and remains fixed throughout train-
ing) such as SNIP (Lee et al., 2018) and GraSP (Wang
et al., 2020) remain competitive even at ∼ 95% spar-
sity (Arnob et al., 2021). More recently, (Ma et al.,
2025) adopted a pre-training pruning scheme based
on one-shot random pruning, showing that highly
sparse DRL networks can outperform dense base-
lines.

Dynamic Sparse Training (DST) trains sparse
models from scratch by dynamically adapting the net-
work topology, pruning low-importance weights and
regrowing new connections during training. While
static sparse training can be surprisingly effective
in RL (Graesser et al., 2022), DST methods (Mo-
canu et al., 2018; Evci et al., 2020) aim to optimize
performance by evolving the structure alongside the
weights. RLx2 (Tan et al., 2022) achieves a com-
pression of 7.5× to 20× with < 3% performance loss
compared to the original dense counterpart.

Following a similar philosophy of dynamic topol-
ogy adaptation, (Sokar et al., 2021) learn binary
masks to select sparse sub-networks, optimizing the
topology via periodic updates. Extending the con-
cept of learning sub-networks within a dense network,
(Arnob et al., 2024) discover binary task-specific
masks, enabling multiple specialized pathways within
a single model.

Most existing sparse DRL approaches focus pri-
marily on two objectives: model compression and
optimizing policy performance under sparsity con-
straints. However, these methods typically rely on
unstructured sparsity, which suffers from irregular
memory access patterns and fails to translate theoret-
ical reductions in floating-point operations (FLOPs)
into real-world speedups on standard hardware (Wen
et al., 2016). In contrast, we aim to optimize on
three fronts simultaneously: model compression, pol-
icy quality, and training acceleration. Our method en-
forces hardware-aware N:M sparsity from the begin-
ning of the training with no dense initialization. This
ensures that the computational efficiency of the N:M
pattern is utilized throughout the entire training, en-
abling acceleration from the very first step.

3 METHODOLOGY

In this section, we present RNM-TD3, an algorithm
designed to train a row-wise N:M structured sparse
agent from scratch. We build on TD3, a widely used
off-policy actor–critic algorithm. Using the determin-
istic TD3 algorithm as our backbone enables us to
isolate the impact of N:M structured sparsity on per-
formance without the additional factors introduced by
stochastic policy methods. Figure 1 provides a high-
level description of the key idea, how the row-wise
N:M structured sparsity is maintained during training.
We first introduce the problem formulation and nota-
tion, describe our approach in more detail, highlight
the key differences between sparse training in DRL
and supervised learning and our method to stabilize
training through soft-reset.

3.1 Problem Formulation & Notation

We frame the RL problem as a standard Markov deci-
sion process (MDP) M = (S ,A ,P ,r,γ). Here, S de-
notes the state space, A is the continuous action space,
P represents the transition probability distribution, r
is the reward function, and γ ∈ [0,1) is the discount
factor.

The TD3 agent consists of a deterministic actor
µθ(s) and twin critics Qφ1 ,Qφ2 , parameterized by θ

and φ1,φ2, respectively. To enable hardware accel-
eration, we enforce a row-wise N:M sparsity pattern,
meaning that for each row of a weight matrix and each
group of M consecutive weights in that row, at most
N weights are non-zero.

Let W (ℓ) ∈ Rdout×din denote the weight matrix of
a fully connected layer ℓ, where din and dout repre-
sent the number of input and output neurons, respec-
tively. Our objective is to maximize the expected re-
turn while ensuring that W (ℓ) satisfies the row-wise
N:M sparsity pattern:

∀ i ∈ {1, . . . ,dout}, ∀ j ∈ {1, . . . ,⌈din/M⌉} :∥∥W (ℓ)
i,( j−1)M+1:min{ jM,din}

∥∥
0 ≤ N.

(1)

where ∥ · ∥0 denotes the L0 norm, which counts the
number of non-zero elements.

Intuitively, Eq. (1) partitions each row of W (ℓ) into
contiguous blocks of size M. Within each block, at
most N entries are non-zero. Sparsity is enforced via
binary masks E(ℓ) ∈ {0,1}dout×din , yielding effective
weights W̃ (ℓ) = W (ℓ)⊙E(ℓ). The projection operator
PN:M used to construct the mask is defined as:



PN:M(W )i, j =


1, if |Wi, j| is in the top-N

of block (i,⌊( j−1)/M⌋)
0, otherwise.

(2)
Masks are initialized to satisfy Eq. (1) and are

applied to all six TD3 networks (i.e., the online ac-
tor network, the twin critic networks, and their cor-
responding target networks). Online masks are up-
dated periodically during training, while remaining
fixed between updates. Target networks are updated
by Polyak averaging (Lillicrap et al., 2015):

ψ̄← τψ+(1− τ) ψ̄, ψ ∈ {θ,φ1,φ2}. (3)

where τ is a small constant (typically τ = 0.005) that
controls the interpolation rate. However, during the
online mask update, the online mask is immediately
copied to the corresponding targets to maintain sta-
bility.

3.2 Training under N:M Sparsity

Training starts with N:M sparse neural networks. The
weight matrix W is initialized using a Kaiming uni-
form distribution, adjusted to account for the reduced
effective fan-in induced by the N:M sparsity con-
straint. Immediately after initialization and prior to
the first training step, we apply the projection opera-
tor from Eq. (2):

E = PN:M(W ), W̃ =W ⊙E. (4)

The resulting sparse matrix W̃ is now N:M sparse.
To update the weights in the dense weights W , we
propagate the gradients from the loss L only to the ac-
tive weights, while the gradients for inactive weights
are zeroed out:

∂L
∂W

=
∂L
∂W̃
⊙E. (5)

After K training steps, if the magnitude of an ac-
tive weight becomes smaller than that of any inactive
weight within the same group of M weights, the inac-
tive weight with the largest magnitude is reactivated
at the next mask update, thereby altering the network
topology.

However, this approximation can induce unstable
mask updates, often referred to as ”mask flickering”.
To quantify topological evolution, we measure the
Sparse Architecture Divergence (SAD) (Zhou et al.,
2021), defined as the Hamming distance between con-
secutive masks:

SADt,t+k = ∥Et+k−Et∥1. (6)

High SAD indicates significant topological changes,
while low SAD suggests convergence to a fixed spar-
sity pattern. While supervised learning typically ben-
efits from minimizing SAD to ensure convergence
(Zhou et al., 2021; Yang et al., 2025), our analysis
suggests that DRL requires a different regime due to
the non-stationary data distribution.

3.3 Differences Between N:M Sparse
Training in DRL and Supervised
Learning

In supervised learning, N:M sparse training typically
updates masks at every optimization step. To reduce
SAD between successive mask updates and improve
final accuracy, supervised learning techniques intro-
duced a weight factor λW that progressively drives
inactive weights toward zero at each step: Sparse
Refined Straight-Through Estimator (SR-STE) (Zhou
et al., 2021).

Figure 2: SAD for 7 different mask update periods for the
actor network in the Half Cheetah environment. SAD de-
cays approximately exponentially regardless of the mask
update period.

In DRL, however, we find that superior perfor-
mance is achieved with much less frequent mask up-
dates, occurring every K ≫ 1 environment steps. A
controlled ablation study over K (Section 4.2) reveals
an optimal mask update period of around K = 4000
for HalfCheetah environment with 1:4 sparsity. The
optimal ”K” depends on both the environment and
the sparsity level. Values around K = 5000 environ-
ment steps work well across tasks and sparsity pat-
terns. SAD decays approximately exponentially to-
ward a stable non-zero value (see Figure 2), in con-
trast to the concave decay trajectories observed in
supervised learning (see Figure 4a in (Zhou et al.,
2021)). This suggests that explicit SAD reduction
mechanisms, such as those in SR-STE, are unneces-
sary or even detrimental in the DRL setting. We ex-



amined two natural variants of applying the SR-STE
shrinkage factor λW within DRL:

1. Per-step application. Applying λW at every
training step causes inactive weights that are
masked by chance at initialization to be repeat-
edly shrunk for the next K steps (i.e., until the next
mask update). This acts as an one-shot pruning of
potentially important connections, leading to the
premature suppression of useful weights and de-
graded performance.

2. Per-mask-update application. Applying λW
only once when the mask is updated avoids per-
step shrinkage. However, in momentum-based
optimizers (e.g., Adam (Kingma and Ba, 2014)),
this factor still contributes across many subse-
quent updates. Since the gradient for inactive
weights is zero, λW becomes the only factor
affecting their magnitude, progressively driving
them toward zero between mask updates. This re-
duces the likelihood of weight reactivation and,
consequently, limits topological flexibility.

Our empirical results suggest that in DRL, the
goal is not to drive SAD to zero. Instead, a stable,
non-zero SAD emerges naturally when masks are up-
dated at the appropriate frequency. Configurations
with larger SAD exhibit greater adaptability to chang-
ing policy dynamics, whereas frequent mask updates
result in low SAD, which reduces topological flexibil-
ity and harms final performance.

3.4 Stabilizing N:M Training Through
Soft Reset

Training highly sparse N:M networks in inherently
unstable environments, such as Humanoid, can lead
to training instabilities. The combination of an unsta-
ble environment, high sparsity ratios (e.g., 1:8), and
dynamic sparse training from initialization often re-
sults in a network topology that lacks the capacity to
model complex locomotion dynamics during the early
stages of training. There is a high probability of sev-
ering the information flow from key sensory inputs
(e.g., knee angle sensors) to critical actuators (e.g.,
leg motors) by masking important weights. Conse-
quently, the agent attempts to maintain balance by
activating non-critical actuators, such as those in the
arms, which fails to produce meaningful locomotion.
The agent falls shortly after the start of the episode,
generating a series of short episodes that prevent the
accumulation of meaningful learning experiences.

After a mask change, the critic suggests target val-
ues for the actor, which the actor attempts to match by
minimizing the error. However, due to high sparsity,

the few remaining active connections must compen-
sate for the missing connections. This is especially
problematic at the beginning of training when weights
are randomly initialized. To achieve the output shifts
required by the critic using such limited connectivity,
the actor aggressively increases the magnitude of the
active weights. Given the tanh nonlinearity at the out-
put, these high-magnitude pre-activations cause the
neurons to saturate (locking at ±1). As a result, the
agent repeatedly selects identical actions, reducing
the SAD to zero.

Empirically, with a mask-update period of K =
15,000, early performance collapse occurred in ap-
proximately 80% of runs in the Humanoid task. To
address this, we introduce a simple soft reset mecha-
nism. Whenever SAD falls below a critical threshold
(e.g., SAD < 10) during a mask update, we resample
a new random N:M mask. This forces topological ex-
ploration. The soft reset completely eliminates early
collapse. After recovery, training proceeds normally,
and SAD maintains a healthy non-zero value through-
out the remainder of the training.

4 EXPERIMENTAL EVALUATION

We evaluate our proposed sparse TD3 variant, RNM-
TD3, on continuous-control tasks from the Gymna-
sium (Towers et al., 2024) MuJoCo benchmark suite
(Todorov et al., 2012). RNM-TD3 introduces a gen-
eral N:M structured sparsity framework built on top of
the TD3 algorithm, agnostic to both network architec-
ture and specific hyperparameters. Our experimental
study addresses two key questions: (i) how different
N:M sparsity patterns impact performance across di-
verse environments relative to dense and unstructured
baselines, and (ii) how the mask-update period influ-
ences both the return and the dynamics of the sparse
topology.

We compare our method against four baselines:

• Dense, TD3 with dense neural networks.

• SSN N:M, a static sparse network with a fixed
N:M mask sampled at initialization and never up-
dated.

• DS-TD3 (Sokar et al., 2021): A dynamic sparse
training method utilizing random regrowth.

• RLx2 (Tan et al., 2022): A method that prunes
weights with the smallest magnitude and regrows
connections based on gradient magnitude.

To ensure a fair comparison, all methods use iden-
tical architectures and hyperparameters. The actor
and both critic networks consist of two hidden layers



Table 1: Comparison of RNM-TD3 with baselines. Results are reported as mean ± standard deviation, normalized relative
to the dense baseline (i.e., scaled such that the dense mean and standard deviation are 1.0). Raw dense baseline scores are
provided for reference: Ant-v5 (4453±1320), HalfCheetah-v5 (10211±1110), Humanoid-v5 (4868±659), and Walker2d-v5
(3767± 833). TS denotes Target Sparsity (%). RNM-TD3 and SNM has the same realized sparsity which slightly deviates
from TS because the last layer remains dense (note that last layer is dense in all methods). DS-TD3 method uses the same
layer sparsity parameter for actor and critic networks, so realized sparsity will always differ from target sparsity.

Environment TS(%) RNM-TD3(best) SSN-N:M (best) DS-TD3 RLx2
Act.(%) Crit.(%) Act.(%) Crit.(%) Act.(%) Crit.(%) Act./Crit.(%)

Ant-v5 50 1.14 ± 0.05 (2:4) 1.05 ± 0.21 (4:8) 0.91 ± 0.18 0.93 ± 0.16
48.92 49.86 48.92 49.86 48.24 49.94 50

75 1.07 ± 0.15 (1:4) 0.93 ± 0.28 (1:4) 0.78 ± 0.16 1.01 ± 0.12
73.37 74.79 73.37 74.79 72.84 74.64 75

87.5 0.86 ± 0.16 (1:8) 0.75 ± 0.18 (1:8) 0.83 ± 0.19 0.82 ± 0.19
85.60 87.26 85.60 87.26 85.34 87.19 87.5

H.Cheetah-v5 50 1.01 ± 0.08 (4:8) 0.96 ± 0.08 (2:4) 1.05 ± 0.09 0.95 ± 0.10
48.92 49.82 48.92 49.82 47.77 49.65 50

75 0.90 ± 0.05 (1:4) 0.82 ± 0.07 (1:4) 0.95 ± 0.17 0.92 ± 0.10
73.39 74.73 73.39 74.73 73.00 74.84 75

87.5 0.72 ± 0.06 (1:8) 0.68 ± 0.05 (1:8) 0.81 ± 0.08 0.80 ± 0.05
85.62 87.18 85.62 87.18 85.23 87.05 87.5

Humanoid-v5 50 1.05 ± 0.03 (2:4) 1.03 ± 0.05 (2:4) 1.04 ± 0.02 0.99 ± 0.03
48.63 49.92 48.63 49.92 48.16 50.01 50

75 1.04 ± 0.03 (1:4) 1.01 ± 0.12 (1:4) 0.99 ± 0.06 0.93 ± 0.07
72.95 74.88 72.95 74.88 72.52 74.73 75

87.5 0.28 ± 0.20 (1:8) * 0.82 ± 0.35 (1:8) 1.02 ± 0.03 0.64 ± 0.26
85.10 87.36 85.10 87.36 84.89 87.28 87.5

Walker2d-v5 50 1.04 ± 0.13 (4:8) 0.94 ± 0.22 (4:8) 1.18 ± 0.13 0.97 ± 0.15
48.92 49.82 48.92 49.82 47.77 49.65 50

75 0.96 ± 0.09 (1:4) 0.89 ± 0.12 (1:4) 0.99 ± 0.26 0.82 ± 0.24
73.39 74.73 73.39 74.73 73.00 74.84 75

87.5 0.58 ± 0.29 (1:8) 0.53 ± 0.26 (2:16) 0.86 ± 0.30 0.83 ± 0.20
85.62 87.18 85.62 87.18 85.23 87.05 87.5

with 256 neurons. All experiments run for 1M en-
vironment steps using a standard static replay buffer
and 1-step returns. Except for their specific sparsity
mechanisms, all algorithms share identical TD3 set-
tings (e.g., learning rate, batch size). Performance is
reported as the average return over 11 random seeds
for each environment over 1M steps.

4.1 Comparative evaluation on
continuous RL tasks

As shown in Table 1, RNM-TD3 exhibits superior
performance across nearly all evaluated setups com-
pared to static N:M sparse training (SSN), with the
exception of Humanoid-v5 at 1:8 sparsity (”*” in the
table). Our method consistently achieves higher aver-
age returns with lower variance, confirming that dy-
namic mask updates significantly improve upon static
initialization. Notably, at 2:4 sparsity, RNM-TD3 out-
performs the dense baseline in all environments and

remains competitive at 1:4 sparsity.
In most configurations, our structured sparse ap-

proach yields performance gains over unstructured
dynamic methods (DS-TD3 and RLx2), achieving up
to a 25% improvement in the complex Ant environ-
ment at 50% sparsity. While unstructured methods
occasionally perform better in lower-dimensional en-
vironments or at extreme sparsity levels, they lack the
hardware-acceleration potential inherent to our N:M
structured approach.

We note that the original RLx2 implementation
(Tan et al., 2022) reports higher scores by utilizing
a dynamic replay buffer and 3-step returns after 300K
steps. However, to isolate the effect of the sparsity
mechanism itself, we evaluate all methods under a
unified, standard TD3 configuration.



Figure 3: SAD for the HalfCheetah actor network for different sparsity patterns and mask update periods. Each curve is
averaged over 11 seeds. Overall 462 runs (7 update periods × 6 sparsity patterns × 11 seeds) confirm a clear correlation
between the mask update period and SAD: more frequent mask updates (smaller update periods) lead to lower SAD, while
less frequent updates (larger update periods) result in higher SAD.

Ablation Study: Impact of Initialization
on N:M Sparse Training

To validate the effectiveness of the proposed initial-
ization strategy, we compare our method, which ad-
justs the Kaiming distribution to account for the effec-
tive fan-in of N:M sparsity patterns, against initializa-
tion sampling from the standard Kaiming distribution
used for dense networks. Adjusting for effective fan-
in results in weight values that are scaled by a factor
of

√
M/N at initialization. The results, normalized to

the dense baseline, are presented in Table 2.
The most significant observation across environ-

ments and sparsity levels is the reduction in variance
when using the N:M adjusted initialization. How-
ever, under high sparsity regimes and in unstable envi-
ronments (e.g., Humanoid),

√
M/N scaling can pro-

duce initial weights with excessively large magni-
tudes, causing the actor’s outputs to saturate shortly
after training begins. This saturation leads to the
vanishing gradients problem. When neurons oper-
ate in the saturated regime of the tanh nonlinearity,
where the derivative approaches zero, gradients di-
minish significantly during backpropagation, effec-
tively preventing weight updates in the earlier layers.

Table 2: Performance comparison between Kaiming initial-
ization adjusted for N:M fan-in (N:M Adj.) against stan-
dard Kaiming initialization (Standard K.). All results are
reported as normalized mean scores ± normalized standard
deviation relative to the dense baselines. A mean > 1.0 in-
dicates performance superior to the dense model.

Env. Spar. N:M Adj. Standard K.

Ant
(2:4) 1.14 ± 0.05 1.09 ± 0.45
(1:4) 1.07 ± 0.15 0.94 ± 0.39
(1:8) 0.86 ± 0.16 0.75 ± 0.44

HC
(2:4) 1.01 ± 0.08 0.96 ± 1.01
(1:4) 0.90 ± 0.05 0.88 ± 0.50
(1:8) 0.72 ± 0.06 0.71 ± 0.61

Hum.
(2:4) 1.05 ± 0.03 1.04 ± 0.37
(1:4) 1.04 ± 0.03 1.03 ± 0.15
(1:8) 0.28 ± 0.20 0.90 ± 1.10

4.2 Ablation study on mask update
period

We investigate the relationship between the mask up-
date period, SAD, and agent performance. We vary
the mask update period from 10 to 20,000 environ-
ment steps in the HalfCheetah environment using a
1:4 sparsity pattern. Results are averaged over 21 ran-
dom seeds for 1M steps.

Table 3 reveals a clear trend: as the mask up-
date period increases, the average return improves,
peaking at 4,000 environment steps before degrad-
ing. Crucially, the worst-performing configurations,
which correspond to very frequent updates, are asso-



Figure 4: SAD for the HalfCheetah actor network across different N:M sparsity patterns and mask update periods. Each curve
is averaged over 11 seeds. Across 462 runs, the sparsity level has only a minor effect on SAD for a fixed mask-update period

Table 3: Impact of the mask update period on HalfCheetah
performance and SAD with 1:4 sparsity.

MA period Avg. ± Std. Act. SAD Crit. SAD
10 7895 ± 816 6 6
50 8251 ± 570 17 21

100 8298 ± 895 26 36
1000 8057 ± 1120 128 185
2000 8286 ± 1139 216 307
4000 9036 ± 534 346 495
6000 8861 ± 805 477 679
8000 8717 ± 753 566 809

10000 8453 ± 782 654 935
15000 8568 ± 817 867 1243
20000 8570 ± 634 1071 1469

ciated with very low SAD values. The intuition be-
hind the observed performance trend is as follows:

• Too small update period: the network archi-
tecture changes too frequently, and the mask is
updated before the underlying weights can suffi-
ciently adapt.

• Too large update period: the architecture adapts
too slowly, and each mask update produces dis-
ruptive jumps in average return.

• Intermediate update period: strikes a balance
between stability and adaptability, allowing the
sparse topology to remain stable long enough to
learn while still updating frequently enough to re-
main responsive, resulting in peak performance.
An additional pattern can be observed: SAD ap-

pears to be correlated with the mask update period.
To test this hypothesis, we conducted experiments in

all four environments across eight different sparsity
patterns. Figure 3 shows the SAD during the train-
ing for the actor network in the HalfCheetah environ-
ment. We observe that low SAD correlates with high
frequency mask update periods. The same qualita-
tive behavior is observed across all environments and
for both actor and critic networks. Furthermore, Fig-
ure 4 indicates that, for a fixed mask update period,
the sparsity level has only a minor effect on SAD.
This implies that the choice of mask update period
has more influence on SAD than the sparsity level.

Computational Efficiency Analysis. Although
our implementation does not utilize bidirectional N:M
sparse masks (i.e., row-wise and column-wise N:M
sparsity pattern), the computational cost is dominated
by forward passes. In our setup (one gradient update
per environment step and a policy delay of two), each
environment step induces 7 forward passes and 2.5
backward passes across the actor, critics, and target
networks. Consequently, even if hardware accelera-
tion is applied only to the forward pass, the end-to-
end training speedup remains substantial, but lower
than the theoretical M/N factor.

5 CONCLUSIONS & FUTURE
WORK

In this work, we introduce RNM-TD3, a semi-
structured sparse DRL algorithm that maintains strict
N:M sparsity throughout training. By enforcing a
hardware-aware sparsity pattern across the actor and



critic networks, our method is aligned with the sparse
matrix-matrix multiplication accelerators. Given that
the computational cost of TD3 is dominated by for-
ward passes, our approach offers practical end-to-end
training speedups, addressing a key limitation of un-
structured sparse methods, which often fail to trans-
late theoretical FLOP reductions into real-world ac-
celeration.

Our empirical analysis highlights the critical role
of mask update dynamics. We found that a moder-
ate, non-zero Sparse Architecture Divergence (SAD)
correlates strongly with improved performance. We
hypothesize that maintaining a higher SAD helps pre-
serve topological flexibility, which may be beneficial
in long-term training regimes where plasticity typi-
cally diminishes. Furthermore, in environments with
changing dynamics, agents with larger SAD are ex-
pected to exhibit greater adaptability.

Finally, we observe that in high sparsity regimes,
weight initialization plays a crucial role, making the
early training phase particularly fragile. To address
this, future work should investigate novel initializa-
tion schemes specifically tailored for high-sparsity
regimes in complex environments and adaptive mask
update schedules.
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