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Abstract

Local triple modular redundancy (LTMR) is often the first choice to harden the FFs of a flash-based FPGA application
against radiation-induced bitflips in space, but LTMR leads to an area overhead of roughly 300%. To cope with
this significant overhead, we propose an error detection based approach. In this work, we compare parity-based error
detection with software-based retry, and LTMR on a reference architecture regarding maximum frequency, area overhead
and processing time. Our results show that our solution based on parity-based error-detection saves from 29% up to
36% of the area overhead caused by LTMR.
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1. Introduction

Field-programmable gate arrays (FPGAs) are often uti-
lized in space avionics due to their processing efficiency,
reprogrammability, and extensible interface capabilities;
providing flexibility for a range of mission requirements.
The avionics must be protected from ionizing radiation in
space. In the absence of a shield (e.g., magnetic field of the
earth), high energy particles can traverse through a dig-
ital circuit and cause errors. These errors can be caused
by permanently damaging the semiconductor structure or
induce significant amount of charge leading to a transient
voltage pulse on a net, which can eventually lead to hard
or soft errors, respectively.

The most common functional transient radiation ef-
fects that happen on the gate level, which can cause a
soft error, are the single event-transient (SET) and -upset
(SEU). An SET can be seen as a transient voltage pulse
on a circuit net. If such a change happens on a data net
and then latched by a FF, this transient can lead to an
upset of the FF-bit and thus to an SEU. SEUs are not
permanent and can be corrected e.g., with a reset.

Fault-tolerance against SEUs can be implemented at
various levels of a circuit, e.g., process- or design-level.
Hardening a circuit at the design-level is referred as radia-
tion hardening by design (RHBD) [1] and involves the wise
use of available design elements by the designer. RHBD is
preferred if the designer has merely access to a commer-
cially available integrated circuits (ICs) and IC manufac-
ture processes, respectively.

The right RHBD techniques depend on the underlying
FPGA architecture. Currently, three memory architec-
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Figure 1: Overview of the reference data handling architecture. Pro-
cessor communicates with the subsystems through the FPGA.

tures exist on the market dependent on how the the pro-
grammable logic is configured. These are SRAM-, flash-
and antifuse-based architectures. On SRAM-based FP-
GAs, the circuit programming information, i.e., configura-
tion, is stored on SRAM. SRAM has a high SEU sensitiv-
ity, therefore, compared to antifuse- and flash-based con-
figurations, the configuration of SRAM-based parts must
additionally be protected.

In this work, we assume a flash-based FPGA architec-
ture. In flash-based FPGAs, SEUs mainly happen in the
flip-flops (FFs) of an FPGA application. The FPGA con-
figuration bits do not have to be protected, because flash
memory has a negligible soft error rate due to SEUs.

The state-of-the-art solution against single bitflips for
flash-based FPGAs is the local triple modular redundancy
(LTMR), i.e., triplicating the application FFs and voting
their outputs. Unfortunately, triplication has a significant
area overhead. Alternatively, a part of the space redun-
dancy in the FPGA may be eliminated by implementing
additional time redundancy, e.g., in software, if the FPGA
acts as a co-unit beside an already radiation-hardened pro-
cessor. An example architecture is depicted in Fig. 1,
where the FPGA implements the communication proto-
col interfaces needed for communicating with the satellite
subsystems and the processor runs the mission software.

The FPGA circuit which has to be hardened, only im-
plements error detection. In case of an error, this cir-
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cuit is functionally isolated, then recovered and the soft-
ware finally instructs the circuit to reprocess the last re-
quest. With this collaborative approach, error correction
is achieved and the overhead of local error correction is
eliminated in the FPGA. This technique will be referred
as error detection with software-based retry (EDSR). In
this paper, parity-based error detection (PBED) is used in
EDSR.

Parity-based codes and triplication are well-known con-
current error detection techniques (CED) [2],[3]. Also er-
ror detection with retry for achieving error correction was
proposed, e.g., in [4]. In recent years, one the one hand,
partial hardening techniques were proposed due to the
relatively high overhead of CED techniques, which selec-
tively harden susceptible parts of the circuit [5]. On the
other hand, software-based fault-tolerance techniques are
also popular due to the flexibility and relatively loose con-
straints of software, e.g., regarding memory requirements,
compared to hardware [6],[7]. Software- and hardware-
based techniques have their tradeoffs, therefore these can
also be used together [6].

This work applies parity-based EDSR on an exam-
ple data handling architecture based on a commercially-
available flash-based FPGA and provides an experimental
comparison to LTMR. Up to now, there is no detailed
comparison based on a state-of-the-art (e.g., [8, 9]) flash-
based FPGA. Due to the limited resources of space-proven
flash-based FPGAs, area savings can be the key for fitting
the application onto the FPGA. Our contributions are

• EDSR in the context of the full system stack includ-
ing the discussion of requirements for the application

• fault tolerance analysis of transaction-based process-
ing, which is an important part of EDSR

• empirical comparison of LTMR versus EDSR for cir-
cuit area overhead, maximum circuit frequency, and
overall system latency due to error correction on a
representative system in space-proven technology

In the following sections, we firstly present the refer-
ence data processing system, which is used as an example
implementation for our approach. In Section 3, we ex-
plain LTMR and EDSR and the implementations which
are compared. In Section 4, we generalize the processing
approach shown in Section 3 and discuss its fault tolerance.
Section 5 presents synthesis results based on a known flash-
based FPGA. We end the paper with a brief conclusion.

2. Reference Architecture

We use a reference model of an on-board data handling
unit (OBDH) for satellites [9] for our analysis. Using this
example architecture we will explain how EDSR is imple-
mented in particular, because LTMR is mostly architecture-
independent. First, we describe an overview of the system,
then the FPGA design, and finally the communication pro-
tocol between the processor and the FPGA.
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Figure 2: Excerpt from the FPGA design. Circuit B is hardened
by PBED using the gray components. Other circuits are immune to
soft errors.
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Figure 3: Simplified state diagram of circuit B, which parses the
remote memory packets sent by the mission software (i.e., the pro-
cessor).

2.1. Overview

Fig. 1 shows an overview of the architecture. OBDH com-
prises of two main processing modules: a processor and an
FPGA. The processor runs the mission software, which in-
volves communicating with different subsystems on-board
of the space system. The communication is done through
the FPGA, which acts as an interface component and im-
plements the various communication interfaces needed by
the subsystems (e.g., RS232, CAN). We assume that the
processor, the communication line between the processor
and the FPGA, and the subsystems are sufficiently pro-
tected against soft errors.

2.2. FPGA Design

From the processor point of view, the FPGA is a remote
memory bus, where the implemented link interfaces are
memory-mapped. The processor utilizes these interface
modules by reading and writing the respective memory
areas.

The simplified FPGA model consists of three functional
blocks: sequential circuits A, B, and C as shown in Fig. 2.
Circuit A serves the memory access requests from the pro-
cessor to circuit B, which issues memory accesses on cir-
cuit C and finally returns the data to the processor using
the FIFO interface of circuit A. In Fig. 3, circuit B is shown
more in detail. Circuit C with a memory block inside
resembles the memory-mapped interfaces. The memories
transfer one word per cycle. Circuit A and C including the
FIFOs and RAM are assumed to be sufficiently protected
against soft errors (e.g., by LTMR and error correcting and
detecting code). Circuit B must be hardened by design.

The FIFOs and the memory need a single clock cycle
for reading or writing a single word, which enables the
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Figure 4: Sequence diagram of the communication protocol, which is
based on transactions. A transaction consists of a request (req) and
a response (resp). The left diagram shows a normal sequence: every
request is followed by a response. On the right, the error behavior
is visualized: if still no response after a timeout is received, the last
transaction is repeated.

masking a single word access operation in the same clock
cycle.

2.3. Communication Protocol

The communication protocol between the processor and
the FPGA is visualized in Fig. 4. The protocol consists of
two kinds of messages: request and response, which both
make up a single transaction. The processor sends mem-
ory access requests for a specific address or address inter-
val to the FPGA and the FPGA (more precisely, circuit B
answers with the according response: A read request is
responded with read data and a write request is acknowl-
edged after the write operation. Every request is acknowl-
edged with a response and a second request cannot be sent
before the response to the first request has been received.
If the FPGA does not respond after a timeout, e.g., due
to a soft error, the last request is repeated.

The communication protocol can send one word per cy-
cle and the messages can be composed of multiple words.
The validity of a single message is dependent on the last
word sent. If the last word flags an error or is not present,
then all the words until the last valid packet are discarded.
Consequently, in case of an error, already transmitted words
of a packet are discarded and the transaction fails.

3. Compared Hardening Techniques

In this section, LTMR and EDSR, and their characteristics
are discussed. EDSR’s implementation on the reference
system is discussed in more detail due to its architecture-
dependence and system impacts.

3.1. Local Triple Modular Redundancy (LTMR)

In LTMR, one FF from the application is triplicated and
the outputs of the resulting three FFs are input to a voter,
which outputs the majority value (cf. Fig. 5). LTMR
detects and corrects a bitflip on an FF locally, hence it
can be automatically applied on top of a circuit. This
makes LTMR functionally transparent to the rest of the
system, consequently the circuit mostly does not require a
redesign before mapping to an FPGA.

FFLogic Logic

LTMR

FF

Logic FF
Majority

Voter
Logic

FF

Figure 5: In LTMR, every application FF is triplicated and their
output is voted. One single bitflip in one clock cycle will be corrected.

3.2. Error Detection with Software-retry (EDSR)

EDSR is based on hardware error detection and software-
retry. We use PBED as the error detection technique in
EDSR. First, we show the implementation details and
discuss the system impacts of PBED and then software-
retry.

3.2.1. Parity-based Error Detection (PBED)

PBED is a well-known error detection technique, which
adds a parity bit to every data word being stored, e.g., by
XORing the data bits [2]. Upon reading the data word, the
parity is calculated again, compared to the stored parity
value and in case of a mismatch, an error signal is asserted.
Subsequently, an error handler can react and initiate a
recovery scheme to correct the error.

After an error, Circuit B must be recovered to an op-
erational state. Often, this is done by resetting the circuit
to its initial state. This in turn leads to a loss of the pro-
cessing context that must be brought back, which involves
periodically backing up the processing context, i.e., check-
pointing. If the processing context does not contain any
information which is needed for a long time, i.e., when a
module regularly falls back to a defined state after a short
time period, then the overhead of checkpointing in the cir-
cuit may be eliminated by reissuing a processing request
after an error. Examples for such a module are a proto-
col converter or a module which exchanges data between
two modules after reformatting data. Circuit B is also an
example for a data exchanging circuit.

Reissuing a request introduces extra processing delays,
which should be negligible if the soft error rates are low.
This will be analyzed in Section 5.

Fig. 2 shows PBED applied on circuit B. The error de-
tection block continuously generates and checks the parity.
If an error is detected, the error signal is asserted and the
error handling block immediately masks the control sig-
nals on either side of the unreliable circuit.

FFs in the unreliable circuit are segmented to groups
and for each group one parity FF is introduced. One single
group with a parity FF is called a cluster. Fig. 6 shows the
generic implementation of the error detection in a single
cluster. The number of clusters is given by ccl (c: count,

3



FF

XORpg

FF

XORpc

cl. error

ORrdc

/

scl − 1
/

scl − 1

FF cluster (#FFs = scl)

/
ccl

error

Figure 6: Generic Implementation of PBED. XORpg generates an
even parity bit from the inputs of the FF cluster with the size of scl.
XORpc continuously checks the integrity of the data stored in the
cluster. If a bitflip in the cluster occurs, XORpc outputs a logical one,
which indicates a cluster error. Typically, there are many clusters in
a circuit. ORrdc reduces the ccl cluster error signals to a single error
signal, which is fed to the error handling block. The error handling
block masks the control signals of the circuit and resets the circuit.

cl: cluster). Each cluster contains scl−1 user FFs plus one
parity FF (s: size). Even parity is generated by XORing
the inputs to the user FFs by the XORpg. The integrity
of the stored bits is checked by the XORpc with scl inputs
and the cluster error is generated by each cluster. Finally,
ccl cluster error signals are reduced to a single error signal
by an OR gate. Error handling is done by generating the
reset and mask signals using the error signal.

The mask signal deactivates the control signals (i.e.,
FIFO and memory control signals) of Circuit B. The reset
signal recovers the circuit from a possibly erroneous state
to its initial state. After recovery, the error flag is de-
asserted and the unreliable module begins data processing
again.

The masking of the outputs allows for a rapid func-
tional isolation of the slave, and enables a recovery window
that span multiple clock cycles, which eases the timing clo-
sure of the hardened circuit. For instance, if the recovery
had to take only one clock cycle, then a recovery based
on a reset would be practically a synchronous reset, which
can have a significant negative effect on the timing.

In this implementation, the error handler is basic and
has merely a reset and mask functionality. A more ad-
vanced error handler can also notify the processor in case
of an error by implementing an FSM, which can carry out
a more complex recovery procedure.

3.2.2. Software-retry

If an incomplete or no response is received by the pro-
cessor in the timeout window, then a recovery of the soft-
ware processing context depends on the state: If an error
happens during processing of a read request, then this re-
quest is repeated. If an error occurs in the middle of a
write transaction, the software cannot know which part of
the transaction was completed and the software can syn-
chronize itself by reading these addresses again or simply
retry the last transaction.

If the software application issues writes to a memory
location which triggers an operation (e.g., transmitting a

command to a subsystem), then retrying retriggers the
last operation, which can be undesirable and dangerous.
For example, given that a single address is written during
one single clock cycle, assume a write operation to ten
addresses. If an error is detected after the fifth address
is written, the module will fall back to the reset state.
As the software is not aware about the addresses which
are successfully written, the software needs to synchronize
itself and determine the state of the remote memory.

In case of such action-triggering memory locations, the
software can issue single memory write operations only.
This has the advantage that every atomic memory write
operation is acknowledged separately and the software knows
exactly which single memory operation did not succeed,
avoiding an indeterminable system state.

There is no need for single cycle, if a memory area is
written which does not trigger an action, i.e., the output
of the target system does not change after the transaction.
An example is the transmit buffer of a communication in-
terface module, where the transmit operation must be first
triggered by setting a bit in a control register allowing to
start a data transfer to a subsystem. In this case, the pro-
cessor would first try to write the transmit payload-data to
the buffer with one write request and in the subsequent re-
quest the transmission operation would be triggered using
another write request.

4. Transaction-based Processing

In our previous example, we have shown a communica-
tion protocol based on transactions. On the example sys-
tem, we achieve tolerance against SEUs by collaboration
of hardware and software. The hardware detects an error,
stops the transaction and the software retries the trans-
action. Compared to error correction on hardware, which
mostly occurs in every clock cycle ensuring that an error
does not cause data corruption, a bit error can lead to
data corruption and hence to an unexpected loss of pro-
cessing context in a circuit. To ensure deterministic data
processing in this context, the processing for the mission
must be carried out in smaller chunks, each acknowledged
by Circuit B that no corruption due to bitflips has taken
place. We call this kind of handshaked data processing
transaction-based processing.

In this section, we generalize our approach by providing
a system specification, which will be then used to show
that the system will not fail under the fault model that we
presume.

4.1. System Specification

A data processing circuit (cf. Circuit B shown in Fig. 2) is
a clocked circuit with internal memory which can transfer
a data word in every clock cycle during processing. Pro-
cessed data is transferred to or from a buffer memory. A
buffer memory is for instance a random-access (RAM) or
first-in first-out (FIFO) memory, like two FIFOs and the
RAM shown in Fig. 2.
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Figure 7: Data processing circuit receives a request from the trans-
action buffer and writes the response after processing. For commu-
nicating with other circuits, miscellaneous buffers are used.

cycleclk t t + 1 . . . t + q . . . t + 1 + p

tb. i/ reqn(0) reqn(1) . . . reqn(q)

tb. /o respn(0) . . . . . . respn(p)

mb. i/o data . . . . . . data

transactionn

Figure 8: An example transaction visualized on cycle level. The
processing circuit (cf. Fig. 7) processes request words and writes the
response words back to the transaction buffer (tb.). During one
clock cycle (cycleclk), one request word (reqn(i)) of a request (reqn)
or one response word (respn(i)) of a response (respn) can be trans-
ferred. During the transaction, also data transfer to/from miscella-
neous buffers (mb.) is possible. i/: input, /o: output, i/o: input or
output. Note that a response does not have to start at t + 1, but
may start later.

A transaction buffer (cf. the FIFOs in Fig. 2) is always
present and used for getting processing data input and
writing back the output. Other buffers can be present for
communicating with other circuits (cf. RAM for memory-
mapped communication interface in Fig. 2 and they are
called miscellaneous buffers. This generalized view on the
data processing circuit is visualized in Fig. 7. All buffers
are sufficiently protected against soft errors, for instance
by using an error detection and correction code.

Processing data is sent by a master (cf. processor in
Fig. 1) and the sent data is called a request. The data pro-
cessing circuit processes the request as a slave and writes
the output on the transaction buffer, which is called a re-
sponse. Request and response consist of at least one or
many consecutive words. A request and the response to
this request make up a processing transaction. A transac-
tion on cycle level is visualized in Fig. 8.

A transaction fails, if the last word of the respective
response is not present in the transaction buffer after a
timeout. In this case the respective request is repeated.
Many consecutive transactions make up a data processing
mission.

4.2. Fault model

There are numerous effects caused by the radiation in
space. SEUs and SETs are the most common functional
transient radiation effects that happen on the gate level.
An SET can happen on every net of a circuit and can be
seen as a transient voltage pulse on a net. If such a change
happens on a data net and then latched by a FF, this tran-
sient can lead to a bitflip in the FF. But an SET can also

happen directly on a net inside the FF itself and possibly
flip the state of the FF. An upset of the FF bit due to a
single energetic particle is called an SEU.

An SET, and thus also an SEU, are asynchronous events
by nature. If an SET occurs during setup or hold times of
an FF, this can lead to metastability and thus to a inde-
terminable state of the FF. An SET can be detrimental
on global nets like clock or reset but also on shared data
nets. A recommended fault-tolerance strategy against an
SET is to triplicate global signals or to use temporal re-
dundancy by introducing delay elements, which introduce
signal delays that are longer than the maximum duration
of a voltage pulse caused by an SET and compare a net
with its delayed value. On the other hand, space redun-
dancy like LTMR is used against an SEU on FFs [10].
Consequently, a sufficient fault-tolerance strategy against
functional errors should accommodate both temporal and
space redundancy.

In this work, we concentrate on SEUs only which occur
directly inside the FF and not on shared nets, which can
cause multiple bitflips. Our fault model is based on the
following assumptions:

• only SEUs happen

• SEUs happen on a discrete time domain

• SEUs happen synchronously to the circuit

Consequently:

• the faults appear as single bitflip errors

• it is not relevant where an SEU happens inside a
clock cycle

• if an SEU happens during a clock cycle, then the
error is only observable in the next clock cycle and
subsequent cycles

4.3. Fault-tolerance Analysis

The goal of our approach is to ensure that the mission
is completed without any erroneous data in the mission
output. In this subsection, we show that our proposed
approach meets the fault-tolerance goal. Note that data
will be corrupted due to SEUs, but as long as the erroneous
data do not propagate from the slave to the master or other
neighboring circuits, it is not an error from the mission
perspective.

If an SEU happens in a clock cycle, in the next clock
cycle a bitflip in a cluster will be observable. PBED can
detect this error and mask the circuit outputs in the same
cycle. At the same time, the recovery is activated and the
circuit is brought to a known state by a reset. As long as
the circuit is in recovery, the circuit outputs stay masked.
In summary, in PBED

• a bit error is detected in the next clock cycle
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• a bit error cannot propagate outside the circuit and
eventually cause silent data corruption

Consequently, if an error is detected during a transaction,
the master will not get a response and subsequently retry
the transaction without any data corruption.

A transaction succeeds or fails as a whole, but the slave
processes the data on every clock cycle. Consequently, the
master cannot know the state of a miscellaneous buffer
after an SEU. We already discussed this problem in Sub-
section 3.2 and given a solution for the example system
architecture. Nevertheless, the actual solution is applica-
tion dependent and the master should pay attention to
this behavior.

5. Experimental Results

We compared needed processing time for an example mis-
sion and synthesis results on different sizes of circuits. As
circuit B, we implemented a module, which is functionally
a concrete instantiation of the FSM in Fig. 3. For PBED,
we chose the cluster size scl = 3, which fits to the ProA-
SIC3 architecture with three-input LUTs and should give
area-efficient results. In the tested implementation, the er-
ror handling comprises of (a) masking the circuit outputs
and (b) resetting the circuit. In the following, the results
are shown.

5.1. Processing Time Penalty

To verify our PBED implementation tool and compare the
runtime performance of LTMR and EDSR under injection
of bitflips, we implemented a bitflip injection tool and a
testbench which performs a mission. The mission consists
of 100 memory access blocks. Each memory access block
consists of three subsequent memory accesses. One single
memory access block is visualized in Fig. 9. The block
starts with a write transaction consisting of 200 words,
which resembles data that should be sent to a subsystem
by the FPGA. After the data are written, the subsystem
data transmission is activated by a single word access. The
subsystem responds in a predefined time window of 100
cycles. After a delay of 100 cycles, the subsystem response
consisting of 55 words is read. At the end of the mission,
the time needed for the whole mission is measured.

At every clock cycle, the bitflip injection tool iterates
over all FFs in the target circuit and flips the FF bits
according to the given probability p randomly. Probability
p is defined as the bitflip probability per clock cycle for a
single FF. The random numbers generated for the bitflip
injection are dependent on a seed. We run the mission for
0 ≤ p ≤ 0.0001, and for one single p, the simulation was
run with 32 different seeds.

In LTMR, the error is corrected in the same clock cy-
cle, but EDSR requires that the error is corrected by the
software by repeating the failed memory access request,
which in turn causes additional processing delays. Fig. 10
shows relative processing time needed by EDSR for the

Write transmit buffer (200 words)

Trigger transmission (1 word)

Wait for 100 cycles

Read transmit buffer (55 words)

response

timeout

response

timeout

timeout

response

Figure 9: Simplified flow diagram of one single memory access block.
It consists of three transactions. The transactions are retried by the
software if there is no response after the timeout has passed.
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Figure 10: Scatterplot of relative processing time for a given mission.
The factor is relative to the processing time of LTMR.

given mission. The processing time of EDSR is plotted
relative to the LTMR processing time, which is constant.
For PBED, the processing time increases with increasing
bitflip probability p, as a failed memory access request
must be repeated. The time loss due to retransmission is
at least the time required to transmit the failed request.
At higher p, if the bitflip rate equals to the memory access
request rate, the processing time would be infinite. There-
fore, the processing time grows exponentially in respect to
p. Note that, at the simulated p interval, there were no un-
detected errors (e.g., multiple bitflips in a PBED cluster)
for both techniques.

For comparison, note that, assuming one year mission
in L2 orbit under 1/cm2 shielding, a programmed circuit
with 5000 FFs on a ProASIC RTPE3000L FPGA has four
SEUs [11]. Assuming that this design runs at 20 MHz,
then p for this mission is calculated by dividing the errors
per year by the number of cycles in one year:

p = 4/5000/365/24/60/60/(20 × 106)

≈ 1.3 × 10−18
(1)

Assuming the error rate from Eq. 1 and transactions
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Table 1: Synthesis results for different sizes of circuits. PBED saves the hardening overhead from 29% up to 35.9%.

cFF A fmax (MHz) tcrit+ (ns) A+
A+

cFF,ba
1 − A+,PB

A+,LT

ba LT PB ba LT PB ba LT PB LT PB LT PB LT PB PB

25 75 39 144 218 196 122.0 97.3 105.6 2.1 1.3 74 52 3.0 2.1 29.7%
49 147 75 298 443 391 116.5 96.2 99.4 1.8 1.5 145 93 3.0 1.9 35.9%
73 219 111 406 671 592 114.6 94.4 93.2 1.9 2.0 265 186 3.6 2.5 29.8%
97 291 147 547 898 793 114.4 95.9 92.4 1.7 2.1 351 246 3.6 2.5 29.9%

121 363 183 684 1118 987 117.4 92.2 83.7 2.3 3.4 434 303 3.6 2.5 30.2%
145 435 219 839 1352 1203 113.2 93.2 73.2 1.9 4.8 513 364 3.5 2.5 29.0%
169 507 255 968 1578 1388 117.4 95.0 85.6 2.0 3.2 610 420 3.6 2.5 31.1%
193 579 291 1099 1805 1587 116.8 89.2 73.2 2.6 5.1 706 488 3.7 2.5 30.9%
217 651 327 1209 1985 1748 116.3 91.8 71.0 2.3 5.5 776 539 3.6 2.5 30.5%
241 723 363 1336 2227 1934 120.7 93.3 75.8 2.4 4.9 891 598 3.7 2.5 32.9%
265 795 399 1472 2433 2140 115.5 91.8 73.0 2.2 5.0 961 668 3.6 2.5 30.5%
290 867 436 1707 2719 2383 114.9 92.5 68.5 2.1 5.9 1012 676 3.5 2.3 33.2%
314 939 472 1816 2949 2600 116.6 91.9 74.0 2.3 4.9 1133 784 3.6 2.5 30.8%
338 1011 508 1932 3172 2779 112.9 92.8 71.5 1.9 5.1 1240 847 3.7 2.5 31.7%
362 1083 544 2076 3397 2990 116.9 91.4 72.5 2.4 5.2 1321 914 3.6 2.5 30.8%
386 1155 580 2230 3625 3199 116.9 89.4 63.8 2.6 7.1 1395 969 3.6 2.5 30.5%
410 1227 616 2381 3866 3414 118.7 82.8 67.8 3.7 6.3 1485 1033 3.6 2.5 30.4%
434 1299 652 2555 4082 3620 118.8 91.1 73.3 2.6 5.2 1527 1065 3.5 2.5 30.3%
458 1371 688 2705 4344 3826 117.1 88.4 68.3 2.8 6.1 1639 1121 3.6 2.4 31.6%
482 1443 724 2857 4549 4030 114.8 88.4 67.7 2.6 6.1 1692 1173 3.5 2.4 30.7%

with a maximum length of 103 cycles, make the time penalty
per year insignificant.

5.2. Synthesis Results

To compare the synthesis impacts, we created circuits of
different sizes by multiple instantiations of circuit B and
demultiplexing the output to not exhaust the input output
buffers of the FPGA. The circuits were synthesized using
the tool Synplify for ProASIC A3P250. LTMR and PBED
were applied using Synplify and a newly-implemented tool
which generates the PBED circuitry on top of an RTL de-
sign, respectively. The output netlists were then placed
and routed using Designer from Microsemi. Compared to
the results in our previous work [12], we used an asyn-
chronous reset for the circuit and introduced a FF for the
reset signal, which could alleviate the timing requirements
for an immediate synchronous reset and resulted in slightly
better timings. The results are shown in Table 1. The
parameters shown are: FF count (cFF), circuit area (A),
maximum frequency (fmax), critical path length (tcrit),
critical path overhead (tcrit+), circuit area overhead (A+),

circuit area overhead per FF ( A+

cFF,ba
) and redundancy sav-

ing by PBED with respect to LTMR (1 − A+,PB

A+,LT
). The

parameters are shown for the bare (ba), LTMR applied
(LT) and PBED applied (PB) circuit.

Note that in ProASIC3 architecture, every configurable
logic block (CLB) can be either configured as an FF or
LUT. Consequently, in this work, circuit area A is defined
as the total count of FFs and LUTs in the circuit.

For bigger circuit areas, the impact of PBED on the
critical path (and thus on the maximum frequency) is
mostly higher than the LTMR’s. PBED reduces the hard-
ening overhead of LTMR by 29% up to 35.9%.

6. Conclusion

Like the electronics for mission critical applications, the
FPGAs used in space applications must be protected against
radiation induced errors, which is often done by redun-
dancy. LTMR is often used on FPGA designs, which can
correct the induced errors locally. If the logic resources are
scarce and the SEU rate on the FPGA during a mission is
low, then the error correction functionality can be shifted
to the software, leaving an FPGA circuit only with er-
ror detection, which we call error detection with software-
based retry (EDSR).

We applied LTMR and parity-based EDSR on a ref-
erence architecture, discussed their system impacts, and
experimentally compared circuit area overhead, maximum
frequency, and needed processing time using an example
mission under fault injection. The results show that at
least 29% of the area overhead caused by the LTMR can
be saved by implementing PBED and correcting the errors
with time redundancy. The impact on the critical path of
the circuit is significant for bigger circuit sizes.
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