
Douglas Cunningham, Petra Hofstedt, Klaus Meer, Ingo Schmitt (Hrsg.): INFORMATIK 2015
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2015

Parity-based Soft Error Detection with Software-based
Retry vs. Triplication-based Soft Error Correction -
An Analytical Comparison on a Flash-based FPGA
Architecture

Gökçe Aydos1 Görschwin Fey12

Abstract: Field-programmable gate arrays (FPGAs) are often utilized in space avionics. To protect
the FPGA logic against the ionizing radiation effects in space, redundancy in form of concurrent
error detection can be used.

In this work, we present a comparative study of a parity-based error detection with software-based
retry, and a triple modular redundancy technique on a known flash-based FPGA architecture (Mi-
crosemi ProASIC3). We compare critical path delay, circuit area overhead, multiple bit error prob-
ability and error correction time penalty. Our analysis shows that a solution based on parity-based
error-detection can at least save about half of the resource overhead caused by triplication of the
flip-flops if the target circuit can be functionally isolated from the rest of the circuit in the FPGA and
if the software supports retransmission of access requests.

Keywords: fault tolerance, FPGA, ProASIC3

1 Introduction

Field-programmable gate arrays (FPGAs) are often utilized in space avionics due to their
processing efficiency, reprogrammability, and extensible interface capabilities; providing
flexibility for a range of mission requirements. The avionics must be protected from ion-
izing radiation in space. In the absence of a shield (e.g., magnetic field of the earth), a
high energy particle can traverse through a digital circuit and induce significant amount
of charge, which can eventually cause unexpected system responses like random signal
glitches on the sensor data, but also catastrophic system failures like mission-loss due to
a nonresponsive satellite [Pe11a]. Due to the lack of cost-efficient physical access to the
space system, the avionics must implement intrinsic fault-tolerance mechanisms based on
the mission requirements.

A local corruption of information stored in a node by a single energetic particle is called
single event upset (SEU). If an SEU is latched by an FF (flip-flop), then it can result in
a static bitflip. These errors are not permanent and can be corrected e.g., with a reset,
thus they are also called soft errors [Pe11b]. Soft errors often happen in the sequential
elements of a circuit, due to the latching-window, electrical- and logical-barriers of com-
binatorics [Li94].
1 University of Bremen, Reliable Embedded Systems, 28359 Bremen, goekce@cs.uni-bremen.de
2 German Aerospace Center, Institute of Space Systems, 28359 Bremen, goerschwin.fey@dlr.de



Gökçe Aydos et al.

Error detection involves only the discovery of an error, while the error correction takes
care of both detecting and recovering the correct information after an upset. This requires
a sort of information redundancy in form of space, e.g., triplication and voting, or time,
e.g., processing information three times by a single unit and comparing the results. Often,
error correction in an FPGA is implemented with space redundancy, especially as triple
modular redundancy (TMR). Error correction typically requires more resources compared
to error detection, in form of redundancy. In presence of tight constraints, this overhead
can turn into a hurdle for fulfilling the design timing closure and area requirements.

OBDH Subsystem

Processor FPGA Subsystem
link links

Fig. 1: Overview of an example data handling system. The processor runs the mission software
and the FPGA implements interface protocol circuits required by various subsystems on-board of a
satellite. The processor uses the FPGA for communicating with the subsystems.

Alternatively, a part of the space redundancy in the FPGA may be eliminated by imple-
menting additional time redundancy, e.g., in software, if the FPGA acts as a co-unit beside
an already radiation-hardened processor. An example architecture is depicted in Fig. 1,
where the FPGA implements the communication protocol interfaces needed for commu-
nicating with the satellite subsystems and the processor runs the mission software. The
processor uses the FPGA in a master-slave manner. The FPGA circuit only implements er-
ror detection and, in case of an error, the software instructs the FPGA to reprocess the last
request. With this collaborative approach, error correction is achieved and the overhead
of local error correction is eliminated. This technique will be referred as error detection
with software-based retry (EDSR). In this paper, a parity-based error detection technique
is used in the implementation of EDSR.

Parity-based codes and triplication are well-known concurrent error detection techniques
(CED) [NZ98],[Gö08]. Also error detection with retry for achieving error correction was
proposed, e.g., in [Ni99]. In recent years, one the one hand, partial hardening techniques
were proposed due to the relatively high overhead of CED techniques, which selectively
harden susceptible parts of the circuit [MT03]. On the other hand, software-based fault-
tolerance techniques are also popular due to the flexibility and relatively loose constraints
of software, e.g., regarding memory requirements, compared to hardware [Re02],[Go06].
Software- and hardware-based techniques have their tradeoffs, therefore these can also be
used together [Re02].

This work applies parity-based error detection with software-based retry and triplication
on an example data handling architecture based on a commercially-available flash-based
FPGA and provides an analytical comparison of critical path overhead, area overhead,
multiple bit error probability, and error correction time penalty. This FPGA is chosen be-
cause it is state-of-the-art for space missions (e.g., [Tr14]) and it is optionally available in
a special integrated circuit package for space environment. Our contributions are (a) the



Parity-based Soft Error Detection with Software-based Retry vs. TMR

discussion of parity-based error detection in the context of the full system stack and (b)
the analysis of TMR versus EDSR with respect to space-proven technology.

In the following sections, we firstly explain the TMR and EDSR techniques and the par-
ticular implementations which are compared. Then, a reference data processing system
is presented, which is used as a testbench for comparing the two implementations. After-
wards, the analytical analysis and its results based on a commercially-available flash-based
FPGA architecture are presented. Our analysis shows that the software-based error correc-
tion approach can cut down area overhead about 50 % compared to TMR at the expense
of extra software runtime, if the target circuit can be functionally isolated from the rest of
the FPGA circuit in case of an SEU.

2 Compared Hardening Techniques

In this section TMR and EDSR techniques are described more in detail including their
system impacts.

2.1 Triple Modular Redundancy

In TMR, one module is triplicated and the outputs of the three modules are input to a
voter, which outputs the majority value. A module in this sense can be anything from a
whole system to a small functional block or simply a gate. TMR regarding FPGAs can be
implemented at various abstraction levels, e.g., at circuit- or gate-level.

There are various TMR techniques based on the reliability requirements of a circuit [Be08].
One of them is the Local TMR (LTMR) and is applied on the gate level; a combinational net
being registered by an FF is connected to two additional FFs and the outputs of the three
FFs are connected to a majority voter. In this work, only SEUs on the FFs are considered.
Consequently, the local TMR is used as the compared TMR technique.

TMR detects and corrects a single bit error on an FF locally using a majority voter, hence
the TMR techniques can be automatically applied on top of a circuit. This makes TMR
functionally transparent to the rest of the system, consequently the circuit mostly does not
require a redesign before mapping to an FPGA.

2.2 Error Detection with Software-based Retry

Detection of an error also requires space or time redundancy, but often less redundancy
resources than both detection and correction. If the resources on a device are scarce and
costly, then implementing a local error correction scheme can become a hurdle. In this
case, the error correction can be moved, e.g., to software, if the processing architecture
renders it possible. Issuing a non-local error correction requires more recovery time than



Gökçe Aydos et al.

a local correction, beginning from the detection until the correction of the error. Never-
theless, if the error rate of the system is low, then a non-local error correction can be
practicable.

A well-known error detection technique is parity-based error detection (PBED), which
adds a parity bit to every data word being stored, e.g., by XORing the data bits and storing
the result along with the data word. [NZ98] Upon reading the data word, the parity is
calculated again, compared to the stored parity value and in case of a mismatch, an error
signal is asserted. Subsequently, an error handler can react and initiate a recovery scheme
to correct the error.

After an error, a module must be recovered to an operational state. Often, this is done by
resetting the module to its initial state. This in turn leads to a loss of the processing context
that must be brought back, which involves periodically backing up the processing context,
i.e., checkpointing. If the processing context does not contain any information which is
needed for a long time, i.e., when a module regularly falls back to a defined state, then
the overhead of checkpointing in the circuit may be eliminated by reissuing a processing
request. Examples for such a module are a protocol converter or simply a module which
exchanges data between two modules after reformatting data. These modules do not have
to store an information for a long time and have a defined state after a chunk of data
or a transaction is processed. The example FPGA circuit B presented in Fig. 2 falls also
in this category, as it only exchanges data between two modules and moves to its initial
state after a request is processed. If an SEU occurs during processing of a request, then
the error handler can reset the processing module and flag an error to the processor that
a processing request can be reissued, i.e., software-based retry. Alternatively, instead of
flagging, the request can be reissued after a nonresponsive timeout. In this case, the time
penalty caused by an SEU is negligible, if the FPGA SEU rates during a mission due to
space radiation are low.

3 Reference Architecture

We compare the two hardening techniques using a reference model of an on-board data
handling unit for a satellite [Tr14]. In the following, important parts of the system are
described at the functional level.

3.1 Overview

The on-board data handling unit comprises of two main processing modules: a proces-
sor and an FPGA. The processor runs the mission software, which involves communicat-
ing with different subsystems on-board of the space system. The communication is done
through the FPGA, which acts as an interface component and implements the various
communication interfaces needed by the subsystems (e.g., RS232, CAN). Fig. 1 shows an
overview of the architecture. We assume that the processor, the communication line be-
tween the processor and the FPGA, and the subsystems are sufficiently protected from any



Parity-based Soft Error Detection with Software-based Retry vs. TMR

FIFO

FIFO

Reliable
Circuit

(A)

Unreliable
Circuit

(B)
Mem.

Reliable
Circuit

(C)

data
read en.

data
write en.

address

data

data

read en.

write en.

Fig. 2: Simplified model of the FPGA design architecture. The circuit in the middle processes the
memory access requests from the left side and responds according to the result of the processed re-
quest. The reliable parts are assumed to be immune to SEUs. The unreliable circuit must be hardened
on the design level.

single upsets through intrinsic redundancy in ICs and error-correcting code on communi-
cation links.

3.2 FPGA Design

From the processor point of view, the FPGA is a remote memory bus, where the imple-
mented link interfaces are memory-mapped. The processor utilizes these interface modules
by reading and writing the respective memory areas.

The FPGA model consists of three functional blocks, circuit A, B, and C as shown in
Fig. 2. Circuit A serves the memory access requests from the processor to circuit B, which
issues memory accesses on circuit C and finally returns the data to the processor using
the FIFO interface of circuit A. Circuit C with a memory block inside resembles the
memory-mapped interfaces. Reliable circuits A and C in this architecture are assumed
to be sufficiently protected against SEUs (e.g., by TMR), whereas the unreliable one must
be protected by a soft error hardening technique. The compared hardening techniques will
be applied on the unreliable circuit.

The FIFOs and the memory need a single clock cycle for reading or writing a single word,
which renders the masking of a single word access operation in a clock cycle (in case of
an error) possible.

3.3 Communication Protocol

The communication protocol between the processor and the FPGA consists of two kinds
of messages: request and response. The processor sends memory access requests for a spe-
cific address or address interval to the FPGA and the FPGA responds with the according
response: In case of a read request, the response carries the data which is requested by the
processor. If a write request is issued, the FPGA sends an acknowledge (ACK) response
after the write request is complete. A not-acknowledge (NACK) response is sent, if a re-
quest cannot be successfully processed. Every request is answered with a response and a
second request cannot be sent before the response to the first request has been received.



Gökçe Aydos et al.

FIFO

FIFO

Reliable
Circuit

(A)

Unreliable
Circuit

(B)

Error
Detection

Error
Handling

Mem.
Reliable
Circuit

(C)

error

data
read en.

output en.

data
write en.

address

data

data
read en.

write en.

output en.

reset

Fig. 3: Parity-based error detection applied on the unreliable circuit. Data redundancy is generated by
the parity generation block. The error detection block checks the data integrity. The error handling
block generates the recovery and masking signals. The AND gates isolate the unreliable circuit by
masking all the control signals which can change the state of the neighbor circuits.

4 Implementation

This section explains how the particular TMR and EDSR using PBED techniques are
implemented on the reference architecture.

4.1 Triple Modular Redundancy

In this work, we concentrate on the SEUs in the sequential parts of a circuit, therefore
LTMR is implemented as the compared TMR technique. The implementation is straight-
forward and it does not require additional attention on the hardened circuit, because it can
be applied on top of a logical circuit before it is placed and routed for the FPGA.

4.2 Error Detection with Software-based Retry

Fig. 3 shows PBED applied on the reference FPGA design. The error detection block
continuously generates the data redundancy and checks the integrity of data. If an error is
detected, the error signal is asserted and the error handling block immediately masks the
control signals on either side of the unreliable circuit.

The FFs in the unreliable circuit are segmented to groups and for each group one parity
FF is introduced. One single group with a parity FF is called a cluster. Fig. 4 shows the
generic implementation of the error detection in a single cluster. The number of clusters
is given by ccl (c: count, cl: cluster). Each cluster contains scl−1 user FFs plus one parity
FF (s: size). Even parity is generated by XORing the inputs to the user FFs by the XORpg.
The integrity of the stored bits is checked by the XORpc with scl inputs and the cluster
error is generated by each cluster. Finally, ccl cluster error signals are reduced to a single



Parity-based Soft Error Detection with Software-based Retry vs. TMR

Comb.
Logic FF

Comb.
Logic

XORpg
(parity generation)

FF

XORpc
(parity check)

cluster error

/
scl −1

/
scl −1

FF cluster (#FFs = scl)

tcrit,PBED,1 tcrit,PBED,2

Fig. 4: Implementation of PBED part (a): generation of the cluster error signal.

FF cluster

ORrdc
(reduction)

reset

output en.

control signals

masked
control
signals

/
ccl

error

tcrit,PBED,2

Fig. 5: Implementation of PBED part (b): generation of the global error signal and error handling.

error signal by an OR gate. The reduction of the cluster error signals and subsequent error
handling is shown in Fig. 5.

The error handling is done by generating the reset and output enable signals combina-
tionally using the error signal. The enable signal masks the control signals (i.e., FIFO and
memory control signals) of the unreliable circuit. The reset signal recovers the circuit from
a possibly erroneous state to its initial state. In the next cycle, the error flag is deasserted
and the unreliable module begins data processing again.

If an incomplete or no response is received by the processor in the timeout window, then
a recovery procedure is initiated. If an error happens during processing of a read request,
then this request is repeated. If an error occurs in the middle of a write transaction, the
software cannot know which part of the transaction was completed and the software can
synchronize itself by reading these addresses again or simply retry the last transaction.
If a write to a memory location triggers an operation (e.g., transmitting a command to
a subsystem), then retrying retriggers the last operation, which can be undesirable and
dangerous.

In case of such action-triggering memory locations, the software can issue single memory
write operations only. This has the advantage that every atomic memory write operation is
acknowledged separately and the software knows exactly which single memory operation
did not succeed. This requirement can be loosened, if a memory area is written which
does not trigger an action, i.e., the output of the target system does not change after the



Gökçe Aydos et al.

transaction. An example is the transmit buffer of a communication interface module, where
the transmit operation must be first triggered by setting a bit in a control register allowing
to begin a data transfer to a subsystem. In this case, the processor would first try to write
the transmit payload-data to the buffer with a single write request and in the subsequent
request the transmission operation would be triggered using an atomic memory access.

5 Analytical Comparison of Needed Resources

In this section, we analytically determine and compare critical path delay, circuit area
overhead, multiple bit error probability and discuss the error correction time penalty of the
two shown techniques. The circuits are mapped to the Microsemi flash-based radiation-
tolerant ProASIC3 FPGA (RT3PE) [Mic13] featuring three input LUTs. This is a known
space-proven FPGA and utilized in state-of-the-art on-board-computing systems.

Many of the comparison parameters are dependent on the size of one cluster scl and the
total cluster count in the unreliable circuit ccl. The parameters are determined for scl

!
= 3x

and ccl
!
= 3y, where x,y ∈ N, which fits the RT3PE architecture with three input LUTs.

This selection of input parameters makes the most timing-efficient use of the FPGA area
for a specific logic depth. With the increasing count of scl and ccl more LUTs are needed for
parity generation and the reduction of cluster error signals, respectively. With increasing
number of LUTs on a critical path, longer delay is introduced on this path. However, the
additional delay is only proportional to the logarithm of scl and ccl. Consequently, the
critical path of a benchmark design only changes for different values x,y ∈ N, leading to
such selection of scl and ccl values. This behavior is visualized in Fig. 6 and explained in
Subsection 5.1 more in detail.

In PBED, for each group of scl− 1 FFs one parity bit is generated. Logic optimization
(e.g., logic packing, retiming) and interconnect delays are not considered, which depend
significantly on the resource utilization in an FPGA.

In the following, the nominal parameters (i.e., hardening not implemented) are labeled
with the subscript nom and the parameters of the circuits with LTMR and PBED with LTMR
and PBED, respectively. An overhead in a measurement parameter by the applied technique
is labeled with the subscript +.

5.1 Critical Path Delay

The critical path delay tcrit limits the maximum frequency of a design and increases with
additional serial logic. In LTMR, every bit must be decoded by a majority voter (MAJ3)
before it is propagated to the combinational logic, which causes an extra delay. The sub-
script pd stands for propagation delay.

tcrit+,LTMR = tpd,MAJ3 (1)

In PBED, there are two critical path candidates (see Fig. 4 and 5):



Parity-based Soft Error Detection with Software-based Retry vs. TMR

1. The critical path of the nominal circuit plus the parity generation path (tcrit,PBED,1)

2. The error detection plus the error handling plus the isolation path (tcrit,PBED,2)

The first path delay can be calculated as follows: The parity has to be generated before the
combinational signals are registered. The propagation delay of the XORpg block is called
tpd,XORpg .

tcrit+,PBED,1 = tpd,XORpg (2)

The error detection path consists of the XORpc, ORrdc, a NOT gate, and an AND gate
(Fig. 4 and 5). The NOT gate and the AND gate can be packed into one LUT, which is
called OR2A:

tcrit,PBED,2 = tpd,XORpc + tpd,ORrdc + tpd,OR2A (3)

XORpc, XORpg and ORrdc are trees of LUTs as shown in Fig. 6. The propagation delay
of a block with an input size sinput is called tpd(block,sinput) and can be calculated by
determining the depth d of the tree and multiplying it with the propagation delay of the
respective three input macro (e.g., OR3 for an OR block), as the interconnect delays are
not considered.

tpd(block,sinput) = dblock · tpd,macro

= dlog3 sinpute · tpd,macro
(4)

/
n

LUT

LUT LUT

LUT LUT

LUTLUT

depth 1 . . . d −1 d

1
2...

...
n

Fig. 6: The figure shows how a gate with n inputs is mapped to an FPGA architecture with three
input LUTs. After mapping, a LUT tree with a depth of d = dlog3 ne is created. Note that if n is not
a power of three, then not all the leafs of the tree exist.



Gökçe Aydos et al.

With Eq. 4, the propagation delays of the three defined blocks can be calculated:

tpd,XORpg = dlog3(scl−1)e · tpd,XOR3

tpd,XORpc = dlog3 scle · tpd,XOR3

tpd,ORrdc = dlog3 ccle · tpd,OR3

=
⌈

log3

⌈cFF,nom

scl

⌉⌉
· tpd,OR3

(5)

As tcrit,PBED,2 is generated in parallel to the nominal circuit (i.e., not serial like tcrit,PBED,1),
tcrit,PBED,2 stays uncritical up to a certain depth of parity check and reduction blocks. There-
fore the parameters scl and cFF,nom limit the maximum frequency of the design.

At a junction temperature of 125°Cand worst-case supply voltage 1.14 V, the tpd,MAJ3,
tpd,XOR3, tpd,OR3, tpd,OR2A are 1.14 ns, 1.42 ns, 1 ns and 1 ns3 respectively [Mic13]. With
these data the critical path caused by the FFs and combinational elements can be calculated
for various scl and cFF,nom parameters.

tcrit+,1 (ns) tcrit,2 (ns) Area+ Area+ : cFF,nom

(x,y) scl cFF,nom PBED LTMR PBED PBED LTMR PBED LTMR

(1,4)
3

162
1.42 1.14

7.84 248 486 153 %
300 %(1,5) 486 8.84 734 1458 151 %

(1,6) 1458 9.84 2192 4374 150 %

(2,3)
9

216
2.84 1.14

8.26 251 648 114 %
300 %(2,4) 648 9.26 737 1944 114 %

(2,5) 1944 10.26 2195 5832 113 %

(3,2)
27

234
4.26 1.14

8.68 260 702 111 %
300 %(3,3) 702 9.68 746 2106 106 %

(3,4) 2106 10.68 2204 6318 105 %

Tab. 1: Comparison of PBED and LTMR regarding critical path and area overhead.

Table 1 shows the critical path delays tcrit+,1 and tcrit,2 for various values of the input
parameter (x,y). The parameters scl and cFF,nom are determined using (x,y), where scl = 3x,
cluster count ccl = 3y and nominal FF count cFF,nom = (scl−1) ·ccl. With increasing depth
of XORpg, tcrit+,1 grows for PBED, i.e., every time when scl reaches a higher power of
3. The additional path delay tcrit+,1 of LTMR is independent of the input parameters. For
scl = 3 PBED and LTMR have a similar critical path overhead. PBED has additionally the
tcrit+,2, which grows with increasing depth of XORpc and ORrdc blocks.

3 tpd,OR3 and tpd,OR2A were available neither in the datasheet or macro library documentation. Therefore an esti-
mated value of 1 ns is assumed for these two parameters.



Parity-based Soft Error Detection with Software-based Retry vs. TMR

5.2 Circuit Area Overhead

Assuming that the circuit area is proportional to the CLB count, we define the parameter
Area as the CLB count. For comparison, we are interested in the area overhead Area+, i.e.,
the CLB cost cCLB+:

Area+ = cCLB+ (6)

In ProASIC3 architecture, every configurable logic block (CLB)4 can be either configured
as an FF or LUT. Then, the circuit area overhead can be calculated by adding the count of
additionally introduced LUTs and FFs:

cCLB+ = cLUT++ cFF+ (7)

In the LTMR design, the FFs are triplicated, i.e., two additional FFs are added for each FF:

cFF+,LTMR = 2 · cFF,nom (8)

LTMR requires one LUT per FF as voter:

cLUT+,LTMR = cFF,nom (9)

In total, the area overhead for LTMR is:

Area+,LTMR = cCLB+,LTMR = 3 · cFF,nom (10)

In PBED, one parity register is needed for a single cluster:

cFF+,PBED = ccl (11)

In PBED, LUTs are needed for the XORpg-, XORpc-, ORrdc-blocks, and OR2A gates for
masking the control signals:

cLUT+,PBED =ccl(cLUT,XORpg + cLUT,XORpc)

+ cLUT,ORrdc + cLUT,OR2A
(12)

As shown in Fig. 6, a block with n inputs blockn creates a tree, so the needed maximum
LUT count for a tree of depth d can be determined by the following formula, assuming
that every new level of the tree introduces 3depth LUTs at maximum:

cLUT,blockn,max =
dblockn−1

∑
i=0

3i

=
1
2
· (3dblockn −1)

(13)

4 In ProASIC3 terminology, a CLB is called a tile or VersaTile



Gökçe Aydos et al.

Using the formula for depth d = dlog3 ne (Fig. 6):

cLUT,blockn,max =
1
2
· (3dlog3 ne−1) (14)

If n is a power of 3 (e.g., in case of XORpc and ORrdc), then the equation can be further
simplified:

n !
= 3x,x ∈ N =⇒ 3dlog3 ne = n

=⇒ cLUT,blockn =
1
2
· (n−1)

(15)

If n+ 1 is a power of 3 (e.g., in case of XORpg), the same amount of LUTs are required.
This is due to the fact that a block will in this case contain a single two-input LUT with the
rest being three-input LUTs. A two- and a three-input LUT both occupy one CLB, thus
the same area.

n+1 !
= 3x,x ∈ N =⇒ 3dlog3 ne = n+1

=⇒ cLUT,blockn =
1
2
·n

(16)

With Eq. 15, cLUT,XORpc and cLUT,ORrdc ; and with Eq. 16, cLUT,ORpg can be determined.
Additionally, there are four OR2As in the PBED implementation. Hence, the Eq. 12 can
be rewritten to:

cLUT+,PBED =

= ccl

(1
2
· (scl−1)+

1
2
· (scl−1)

)
+

1
2
(ccl−1)+4

= ccl(scl−1)+
1
2
(ccl−1)+4

(17)

Finally, with Eq. 7, 11 and 17, total area cost for PBED equals to:

Area+,PBED = ccl + ccl(scl−1)+
1
2
(ccl−1)+4

= ccl(scl +
1
2
)+3.5

(18)

cFF,nom is a main input parameter, therefore it is better to rewrite ccl using cFF,nom:

Area+,PBED =
cFF,nom

scl−1
(scl +

1
2
)+3.5 (19)

Table 1 shows the area overhead Area+ and area overhead caused per FF Area+ : cFF,nom
5

for various values of scl and cFF,nom parameters. PBED area overhead is approximately
59 % of the LTMR area overhead for scl = 3 and it decreases with increasing scl and ccl.
The LTMR area overhead is independent of the input parameters.
5 Area overhead Area+ is related to cFF,nom instead of the whole design including combinatorics, because the

area overhead is only dependent on cFF,nom and the combinatorics LUT count is arbitrary.



Parity-based Soft Error Detection with Software-based Retry vs. TMR

5.3 Multiple bit error probability

We apply the definition of a cluster also on LTMR and define an LTMR cluster as the
group of three FFs after triplication, i.e., scluster,LTMR = 3. LTMR and PBED techniques
both are immune against one bit flip in a clock cycle, but not against multiple bit errors,
assuming that every FF in LTMR is updated in every clock cycle6. In this subsection,
we will compare the LTMR and PBED regarding multiple bit error probability, i.e., the
probability that an error cannot be detected on the circuit.

If a single particle travels through the circuit, then it can cause single or multiple bit errors
dependent on the amount of energy transferred to the circuit and the size of the IC struc-
tures. In this analysis, we assume that the CLBs are far enough from each other to consider
bitflips as independent events. Therefore, define p as the bit flip probability of a single FF
in a clock cycle and assume that p for individual FFs are statistically independent. Then,
the multiple bit error (MBE) probability in a single cluster pMBE,cl can be calculated by:

pMBE,cl =
scl

∑
i=2

(
scl

i

)
pi(1− p)scl−i

= 1−
1

∑
i=0

(
scl

i

)
pi(1− p)scl−i

= 1− (1− p)scl − scl · p(1− p)scl−1

(20)

The last equation assumes that all kinds of multiple bitflips cannot be detected by PBED.
In fact, PBED can detect all odd number of bitflips in a cluster, but the probability of
multiple bit flips in a cluster greater than 2 is negligible. With pMBE,cl, the multiple error
probability of the whole circuit pMBE can be calculated in a similar manner like in the
previous equation:

pMBE =
ccl

∑
i=1

(
ccl

i

)
pi

MBE,cl(1− pMBE,cl)
ccl−i

= 1− (1− pMBE,cl)
ccl

= 1− ((1− p)scl + scl · p(1− p)scl−1)ccl

(21)

Assuming one year mission in L2 orbit under 1/cm² shielding, a programmed circuit with
5000 FFs on an RTPE3000L FPGA has four SEUs [BSV11]. If this design runs at 20 MHz,
then p can be calculated by:

p = 4/5000/365/24/60/60/(20×106)

≈ 1.27×10−18
(22)

Table 2 shows a comparison of multiple bit error probabilities for various scl cFF,nom pa-
rameters. For scl = 3, pMBE is approximately the same for PBED and LTMR. Generally,
6 Otherwise, the bitflips can accumulate and lead to uncorrectable errors.



Gökçe Aydos et al.

when cFF,nom increases, pMBE also increases, but for scl > 3, PBED is more susceptible to
multiple bit errors.

pMBE

(x,y) scl cFF,nom PBED LTMR

(1,4)
3

162 7.82 E-34 7.82 E-34
(1,5) 486 2.35 E-33 2.35 E-33
(1,6) 1458 7.04 E-33 7.04 E-33

(2,3)
9

216 1.25 E-32 1.04 E-33
(2,4) 648 3.75 E-32 3.13 E-33
(2,5) 1944 1.13 E-31 9.38 E-33

(3,2)
27

234 1.32 E-31 1.13 E-33
(3,3) 702 3.96 E-31 3.39 E-33
(3,4) 2106 1.19 E-30 1.02 E-32

Tab. 2: Comparison of PBED and LTMR regarding multiple bit error probability of one cluster
pMBE,cl and whole circuit pMBE

Overall, scl = 3 is a reasonable choice for saving significant amount of FPGA resources,
and for having as little impact on the critical path as possible. If the maximum frequency
is not important, then higher scl results in less area overhead up to approximately 35 % of
the LTMR area overhead.

5.4 Error Correction Time Penalty

In LTMR, the error is corrected in the same clock cycle, but EDSR requires that the er-
ror is corrected by the software by repeating the memory access request, which in turn
causes additional processing delays. Consequently, the total time penalty is proportional
to the error rate during the mission. For example, assuming the same error rate from the
Section 5.3 makes the time penalty per year insignificant.

6 Conclusion

The FPGAs used in space applications must be protected against radiation induced errors,
which is often done by redundancy. TMR is often used on FPGA designs, which can cor-
rect the induced errors locally. If the logic resources are scarce and SEU rate on the FPGA
during a mission is low, then the error correction functionality can be shifted to the soft-
ware, leaving an FPGA circuit only with error detection. We have shown an example ar-
chitecture which implements PBED with software-based retry and analytically compared
the needed resources for the Microsemi ProASIC3 architecture. The results show that sig-
nificant part of the area overhead caused by the LTMR can be saved by implementing
PBED on an FPGA circuit and correcting the errors with time redundancy, i.e., repeating



Parity-based Soft Error Detection with Software-based Retry vs. TMR

the instructions to the FPGA in case of an error. The disadvantage of PBED shows up for
greater scl values when the critical path for parity generation grows. Nevertheless, if the
maximum frequency is not the first priority in design, then significant area can be saved
at a cost of higher pMBE. In certain applications this may be the key to adopt sufficient
functionality in a single FPGA component.

Acknowledgment
This work has been supported by the University of Bremen’s Graduate School SyDe,
funded by the German Excellence Initiative.

References
[Be08] Berg, Melanie: Design for Radiation Effects. Presentation from Military and Aerospace

Programmable Logic Devices (MAPLD) Workshop, 2008.

[BSV11] Battezzati, Niccoláo; Sterpone, Luca; Violante, Massimo: Reconfigurable Field Pro-
grammable Gate Arrays for Mission-Critical Applications. Springer, chapter 7, 2011.

[Go06] Goloubeva, Olga; Rebaudengo, Maurizio; Reorda, Matteo Sonza; Violante, Massimo:
Software-implemented hardware fault tolerance. Springer, 2006.

[Gö08] Gössel, Michael; Ocheretny, Vitaly; Sogomonyan, Egor; Marienfeld, Daniel: New meth-
ods of concurrent checking, volume 42 of Frontiers In Electronic Testing. Springer
Netherlands, 2008.

[Li94] Liden, P.; Dahlgren, P.; Johansson, R.; Karlsson, J.: On latching probability of particle
induced transients in combinational networks. In: 24th International Symposium on Fault-
Tolerant Computing (FTCS). pp. 340–349, June 1994.

[Mic13] Microsemi. Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs
Datasheet, November 2013.

[MT03] Mohanram, K.; Touba, N.A.: Cost-effective approach for reducing soft error failure rate
in logic circuits. In: International Test Conference (ITC). volume 1, pp. 893–901, Sept
2003.

[Ni99] Nicolaidis, M.: Time redundancy based soft-error tolerance to rescue nanometer technolo-
gies. In: 17th IEEE VLSI Test Symposium. pp. 86–94, 1999.

[NZ98] Nicolaidis, M.; Zorian, Y.: On-Line Testing for VLSI - A Compendium of Approaches.
Journal of Electronic Testing Theory and Applications (JETTA), 12:7–20, February 1998.

[Pe11a] Petersen, Edward: Single Event Effects in Aerospace. John Wiley & Sons, chapter 1,
2011.

[Pe11b] Petersen, Edward: Single Event Effects in Aerospace. John Wiley & Sons, chapter 2,
2011.

[Re02] Rebaudengo, M.; Reorda, M.S.; Violante, M.; Nicolescu, B.; Velazco, R.: Coping with
SEUs/SETs in microprocessors by means of low-cost solutions: a comparison study. IEEE
Transactions on Nuclear Science, 49(3):1491–1495, Jun 2002.

[Tr14] Treudler, Carl Johann; Schröder, Jan-Carsten; Greif, Fabian; Stohlmann, Kai; Aydos,
Gökçe; Fey, Görschwin: Scalability of a Base Level Design for an On-Board-Computer
for Scientific Missions. In: Proceedings of the Data Systems in Aerospace (DASIA) Con-
ference. 2014.


